Changes in tumor metabolism as readout for Mammalian target of rapamycin kinase inhibition by rapamycin in glioblastoma.

نویسندگان

  • Liu Hua Wei
  • Helen Su
  • Isabel J Hildebrandt
  • Michael E Phelps
  • Johannes Czernin
  • Wolfgang A Weber
چکیده

PURPOSE Inhibition of the protein kinase mammalian target of rapamycin (mTOR) is being evaluated for treatment of a variety of malignancies. However, the effects of mTOR inhibitors are cytostatic and standard size criteria do not reliably identify responding tumors. The aim of this study was to evaluate whether response to mTOR inhibition could be assessed by positron emission tomography (PET) imaging of tumor metabolism. EXPERIMENT DESIGN Glucose, thymidine, and amino acid utilization of human glioma cell lines with varying degrees of sensitivity to mTOR inhibition were assessed by measuring in vitro uptake of [18F]fluorodeoxyglucose ([18F]FDG), [18F]fluorothymidine ([18F]FLT), and [3H]l-tyrosine before and after treatment with the mTOR inhibitor rapamycin. The tumor metabolic activity in vivo was monitored by small-animal PET of tumor-bearing mice. The mechanisms underlying changes in metabolic activity were analyzed by measuring expression and functional activity of enzymes and transporters involved in the uptake of the studied imaging probes. RESULTS In sensitive cell lines, rapamycin decreased [18F]FDG and [18F]FLT uptake by up to 65% within 24 hours after the start of therapy. This was associated with inhibition of hexokinase and thymidine kinase 1. In contrast, [3H]l-tyrosine uptake was unaffected by rapamycin. The effects of rapamycin on glucose and thymidine metabolism could be imaged noninvasively by PET. In sensitive tumors, [18F]FDG and [18F]FLT uptake decreased within 48 hours by 56 +/- 6% and 52 +/- 8%, respectively, whereas there was no change in rapamycin-resistant tumors. CONCLUSIONS These encouraging preclinical data warrant clinical trials evaluating [18F]FDG and [18F]FLT-PET for monitoring treatment with mTOR inhibitors in patients.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Mammalian target of rapamycin inhibition promotes response to epidermal growth factor receptor kinase inhibitors in PTEN-deficient and PTEN-intact glioblastoma cells.

The epidermal growth factor receptor (EGFR) is commonly amplified, overexpressed, and mutated in glioblastoma, making it a compelling molecular target for therapy. We have recently shown that coexpression of EGFRvIII and PTEN protein by glioblastoma cells is strongly associated with clinical response to EGFR kinase inhibitor therapy. PTEN loss, by dissociating inhibition of the EGFR from downst...

متن کامل

Eupafolin ameliorates lipopolysaccharide-induced cardiomyocyte autophagy via PI3K/AKT/mTOR signaling pathway

Objective(s): Eupafolin, a major active component of Eupatorium perfoliatum L., has anti-inflammatory and anti-oxidant properties. Lipopolysaccharide (LPS) is responsible for myocardial depression. A line of evidences revealed that LPS induces autophagy in cardiomyocytes injury. This study aims to evaluate the effects of eupafolin on LPS-induced cardiomyocyte autophagy...

متن کامل

THE EFFECT OF ENDURANCE TRAINING ON PROTEIN KINASE-B AND MECHANICAL TARGET OF RAPAMYCIN IN THE LEFT VENTRICLE OF THE HEART OF DIABETIC RATS INDUCED BY STREPTOZOTOCIN AND NICOTINAMIDE

Background: The pathway of insulin messengers is so important that diabetes can lead to disruption of this pathway. However, the aim of this study was to investigate the effect of 8 weeks of endurance training on protein Kinase-B (PKB or AKT) and mechanical target of rapamycin (mTOR) in the left ventricle of the heart of diabetic rats induced by streptozotocin and nicotinamide. Methods: In thi...

متن کامل

Rapamycin Inhibits Expansion of Cord Blood Derived NK and T Cell

Background: The mammalian target of rapamycin (mTOR) is important in hematopoiesis. Despite the central role of mTOR in regulating the differentiation of immune cells, the effect of mTOR function on cord blood mononuclear cells is yet to be defined. Objectives: To evaluate the effect of mTOR inhibition, using rapamycin on the proliferation and apoptosis of cord blood mononuclear cells, as well ...

متن کامل

P162: Emerging Perspectives on Mtor-Associated Inflammation in Neurodegenerative Diseases

Inflammatory processes have been shown to be involved in development and progression of neurodegenerative diseases. Mammalian target of rapamycin (mTOR) involves in various cellular processes including autophagy, apoptosis and energy metabolism. Recently, studies have been shown an association between mTOR pathway and inflammation, supporting the role of the pathway in the pathogenesis of infla...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Clinical cancer research : an official journal of the American Association for Cancer Research

دوره 14 11  شماره 

صفحات  -

تاریخ انتشار 2008